Angle Sum Property of a Triangle: Definition, Properties, Proofs (2024)

  • Written By Madhurima Das
  • Last Modified 25-01-2023

Angle Sum Property of a Triangle: Definition, Properties, Proofs (1)

Angle Sum Property of a Triangle: A triangle is one of the most commonly used shapes in geometry. A triangle is made up of three sides and three angles. The triangle’s elements are its sides and angles. All polygons have two kinds of angles: internal angles and outer angles. The triangle has three inner angles and six outside angles since it is the smallest polygon. ABC denotes a triangle with the vertices A, B, and C. There are many distinct types of triangles with varied angles and edges, but they always obey the triangle sum principles. The angle sum property of a triangle and the exterior angle property of a triangle are the two most essential properties.

The Angle Sum Property of a Triangle states that the sum of a triangle’s internal angles is 180 degrees. Interior angles are created at the vertex of a triangle where any two of its edges meet. The internal angle of a triangle is the angle formed by two sides of a triangle. It is also known as a triangle’s internal angle property. This property asserts that the sum of a triangle’s internal angles is 180°. The angle sum property formula for an ABC triangle is A+B+C = 180°. On this page, let us discuss everything about the Angle Sum Property of a Triangle. Read further to find more.

Angle Sum Property of a Triangle: Definition, Properties, Proofs (2)

Angle Sum Property of Polygon

A polygon is a closed figure formed by straight line segments. The angles inside the polygon are known as interior angles. On the other hand, the angles outside the polygon are known as exterior angles formed by an extension of a side and its adjacent side. A polygon can have n number of sides.
We can get the sum of all the interior angles of it by using a specified formula.

The sum of the interior angles \( = (n – 2) \times {180^{\rm{o}}},\) where \(n\) is the number of sides.

The sum of the exterior angle of any polygon is \({360^{\rm{o}}}\).

We know that a triangle is a polygon with three sides.
Thus, using the above formula, we have \( = (3 – 2) \times {180^{\rm{o}}} = {180^{\rm{o}}}\)when \(n = 3\).

Angle Sum Property of Triangle

A triangle is the smallest polygon formed by three line segments, makingthe interior andexterior angles. An interior angle isan angle formed between two adjacent sides of a triangle. In contrast, an exterior angle isan angle formed between a side of the triangle and an adjacent side extending outward. There are different types of triangles, but for each type, the sum of the interior angles is \({180^{\rm{o}}}\). According to the angle sum property of a triangle, the sum of all three interior angles of a triangle is \({180^{\rm{o}}},\) and the exterior angle of a triangle measures the same as the sum of itstwo opposite interior angles. Thus, theangle sum property of a triangle is useful for finding the measure of an unknown angle when the values of the other two angles are known.

Proof for the Sum of the Interior Angles of a Triangle

It is easier to prove the angle sum property using few geometrical concepts.

To prove: Sum of the interior angles of a triangle is \({180^{\rm{o}}}\)

Angle Sum Property of a Triangle: Definition, Properties, Proofs (3)

In \(\Delta ABC\) given above, a line is drawn parallel to the side \(BC\) of \(\Delta ABC.\)
This line passes through vertex \(A\). Label this line as \(PQ\).
Since the straight angle measures \({180^{\rm{o}}}\),
Hence, \(\angle PAQ = {180^{\rm{o}}}\).
That is, \(\angle PAB + \angle BAC + \angle CAQ = {180^{\rm{o}}}\)
Let us mark this as equation \(1\).
\(\angle PAB + \angle BAC + \angle CAQ = {180^{\rm{o}}}………\left( 1 \right)\)
Now, we need to prove \(∠PAB=∠ABC\) and \(∠CAQ=∠ACB\)
As \(PQ || BC\) and \(AB\) is a transversal, then alternate interior angles are equal/congruent
\(\therefore \angle PAB = \angle ABC\)
Let us mark this as equation \(2\).
\(∠PAB=∠ABC…..(2)\)
Similarly, as \(PQ || BC\) and \(AC\) is a transversal, then alternate interior angles are equal/congruent.
\(∴ ∠CAQ=∠ACB\)
Let us mark this as equation \(3\).
\(∠CAQ=∠ACB…..(3)\)
So, the theorem used here is that the alternate interior angles are equal/congruent if a transversal intersects the lines.
Now, using equations \(2\) and \(3\) marked above, substitute \(∠ABC\) for \(∠PAB\) and \(∠ACB\) for \(∠CAQ\) in equation \(1\):
So, the equation \(∠PAB + ∠BAC + ∠CAQ = {180^{\rm{o}}}\)
becomes
\(∠ABC + ∠BAC + ∠ACB = {180^{\rm{o}}}\)
Let this be marked as equation \(4.\)
\(∠ABC + ∠BAC + ∠ACB = {180^{\rm{o}}}………..\left( 4 \right)\)
Hence, if we consider \(\Delta ABC,\) equation \(4\) implies that the sum of the interior angles of \(\Delta ABC\) is \({180^{\rm{o}}}\). We can also write this as
\(∠A + ∠B + ∠C = {180^{\rm{o}}}.\)
Thus, it is proved that the sum of all the interior angles of a triangle is \({180^{\rm{o}}}.\)

Proof for the Relation Between Exterior Angle and the Sum of the Opposite Interior Angles of a Triangle

Angle Sum Property of a Triangle: Definition, Properties, Proofs (4)

\(∠ACB\) and \(∠ACD\) form a linear pair of angles since they represent the adjacent angles on a straight line.
Thus, \(\angle ACB + \angle ACD = {180^{\rm{o}}}………\left( 1 \right)\) (linear pair axiom)
Also, from the angle sum property, it follows that:
\(\angle ACB + \angle BAC + \angle CBA = {180^{\rm{o}}}………\left( 2 \right)\) (angle sum property of triangle)
From equation \((1)\) and \((2),\) it follows that:
\(∠ACB+∠ACD=∠ACB+∠BAC+∠CBA\)
Now, cancelling \(∠ACB\) from both the sides we have,
\(∠ACD=∠BAC+∠CBA\)

This property can also be proved using the concept of parallel linesas follows:

Angle Sum Property of a Triangle: Definition, Properties, Proofs (5)

In \(ABC,\) side \(BC\) is extended.
A line\(CE\) is drawn parallel to the side \(AB.\)
Since\(BA||CE\)and\(AC\)is the transversal,
\(∠CAB=∠ACE………(3)\) (Pair of alternate angles)
Also,\(BA||CE\)and\(BD\) is the transversal
Therefore, \(∠ABC=∠ECD……….(4)\) (Corresponding angles)
We have, \(\angle ACB + \angle BAC + \angle CBA = {180^{\rm{o}}}………\left( 5 \right)\)
Since the sum of angles on a straight line is \({180^{\rm{o}}}\)
Therefore, \(\angle ACB + \angle ACE + \angle ECD = {180^{\rm{o}}}………\left( 6 \right)\)
Since, \(∠ACE+∠ECD=∠ACD\)
Substituting this value in equation \((6)\)
\(\angle ACB + \angle ACD = {180^{\rm{o}}}………..\left( 7 \right)\)
From the equations \((5)\) and \((7)\) we get,
\(∠ACB+∠ACD=∠ACB+∠BAC+∠CBA\)
Now, cancelling \(∠ACB\) from both the sides we have,
\(∠ACD=∠BAC+∠CBA\)
Hence, it can be observed that the exterior angle of a triangle equals the sum of its opposite interior angles.

Application of Angle Sum Property of Triangle

We can use the angle sum property of the triangle to find the sum of the interior angles of another polygon. Since every polygon can be divided into triangles, the angle sum property can be extended to find the sum of the angles of all polygons. Let us see how this is applicable in quadrilaterals.

Angle Sum Property of a Triangle: Definition, Properties, Proofs (6)

Angle Sum Property of a Quadrilateral

A diagonal of a quadrilateral divides a quadrilateral into two triangles. So, the sum of angles of a quadrilateral will be equal to the sum of angles of two triangles.
That is, the sum of the interior angles of a quadrilateral is \({360^{\rm{o}}}\).
Let’s prove that the sum of all the four angles of a quadrilateral is \({360^{\rm{o}}}\).

Angle Sum Property of a Triangle: Definition, Properties, Proofs (7)

We know that the sum of angles in a triangle is \({180^{\rm{o}}}\) from the first proof
Now, consider \(△ADC,\)
\(\angle ADC + ∠DAC + ∠DCA = {180^{\rm{o}}}………..\left( 1 \right)\) (Sum of the interior angles of a triangle)
Now, consider triangle \(△ABC,\)
\(\angle ABC + ∠BAC + ∠BCA = {180^{\rm{o}}}………..\left( 2 \right)\) (Sum of the interior angles of a triangle)
On adding both equations \((1)\) and \((2),\) we have,
\((\angle ADC + \angle DAC + \angle DCA) + (\angle ABC + \angle BAC + \angle BCA) = {180^{\rm{o}}} + {180^{\rm{o}}}\)
\( \Rightarrow \angle ADC + (\angle DAC + \angle BAC) + (\angle BCA + \angle DCA) + \angle ABC = {360^{\rm{o}}}\)
We see that \((∠DAC+∠BAC)=∠DAB\) and \((∠BCA+∠DCA)=∠BCD.\)
Substituting them we have,
\(\angle ADC + ∠DAB + ∠BCD + \angle ABC = {360^{\rm{o}}}\)
Hence, the sum of angles of a quadrilateral is \({360^{\rm{o}}}\) which is known as the angle sum property of quadrilaterals.

Solved Examples – Angle Sum Property of a Triangle

Q.1. If the sum of two interior angles is \({110^{\rm{o}}}\), find the third angle.
Ans:
Given, the sum of two interior angles is \({110^{\rm{o}}}\).
Let us assume the third angle is \(x\).
We know that sum of three interior angles is \({180^{\rm{o}}}\).
Thus, \(x + {110^{\rm{o}}} = {180^{\rm{o}}} \Rightarrow x = {180^{\rm{o}}} – {110^{\rm{o}}} = {70^{\rm{o}}}\)

Q.2. If the angles of a triangle are in the ratio \(3:4:5,\) determine the value of the three angles.
Ans:
Let the angles be \(3x,\, 4x\)and \(5x\).
According to the angle sum property of the triangle,
\(3x + 4x + 5x = {180^{\rm{o}}},\)
\( \Rightarrow 12x = {180^{\rm{o}}},\)
\( \Rightarrow x = {15^{\rm{o}}}\)
Thus, the three angles will be \(3x = 3 \times {15^{\rm{o}}} = {45^{\rm{o}}},4x = 4 \times {15^{\rm{o}}} = {60^{\rm{o}}},5x = 5 \times 15 = {75^{\rm{o}}}\).
Therefore,the three angles are \({45^{\rm{o}}},{60^{\rm{o}}},{75^{\rm{o}}}\)

Q.3. In an isosceles \(\Delta DEF,\), if \(∠D = {120^{\rm{o}}},\) what is the measurement of \(∠F\)?
Ans:
Given, \(∠D = {120^{\rm{o}}},\)
Two angles can not be \({120^{\rm{o}}}\) as the sum of all interior angles is \({180^{\rm{o}}}\).
So, \(∠F\) can not be \({120^{\rm{o}}}\).
We can say, \(\angle F + \angle E = {180^{\rm{o}}} – {120^{\rm{o}}} = {60^{\rm{o}}}\)
\(∠F=∠E\) (the triangle is isosceles)
Therefore, \(\angle F = \frac{{{{60}^{\rm{o}}}}}{2} = {30^{\rm{o}}}\)

Q.4. If an exterior angle is \({100^{\rm{o}}}\) and one of its opposite interior angles is \({60^{\rm{o}}}\), find the other two angles.
Ans:
Given the exterior angle is \({100^{\rm{o}}}\).
Let us say, one opposite interior angle to the exterior angle is \(x\).
So, \(x + {60^{\rm{o}}} = {100^{\rm{o}}}\) (an exterior angle is equal to the sum of its opposite interior angles)
\( \Rightarrow x = {40^{\rm{o}}}\)
Therefore, the other angle \( = {180^{\rm{o}}} – \left( {{{60}^{\rm{o}}} + {{40}^{\rm{o}}}} \right) = {80^{\rm{o}}}\)
Hence, the other two angles of the triangle are \({80^{\rm{o}}},{40^{\rm{o}}}.\)

Q.5. One of the acute angles of a right triangle is \({48^{\rm{o}}}\). Find the measurement of the other acute angle.
Ans:
Given, one of the acute angles is \({48^{\rm{o}}}\).
The other angle of the triangle is \({90^ \circ }.\)
Let us say the other acute angle is \(x\).
So, \(x + {90^{\rm{o}}} + {48^{\rm{o}}} = {180^{\rm{o}}} \Rightarrow x = {180^{\rm{o}}} – {138^{\rm{o}}} = {42^{\rm{o}}}\)
Hence, the other acute angle is \({42^{\rm{o}}}\)

Angle Sum Property of a Triangle: Definition, Properties, Proofs (8)

Summary

We have learned in this article that the sum of the interior angles of a triangle is equal to \({180^{\rm{o}}},\) and an exterior angle of a triangle is equal to the sum of two opposite interior angles.
These two properties are applicable for every type of triangle.

Frequently Asked Questions (FAQs) on Angle Sum Property of a Triangle

Q.1. Explain the angle sum property of a triangle.
Ans:
The angle sum property of a triangle states that the sum of all three interior angles of a triangle is 180°, and the exterior angle of a triangle measures the same as the sum of itstwo opposite interior angles.

Q.2. What is the formula of the sum of the interior angles of a polygon with \(n\) numbers of sides?
Ans:
The formula of the sum of the interior angle \( = (n – 2) \times {180^{\rm{o}}}\)

Q.3. What is the exterior angle property of a triangle?
Ans:
The exterior angle property says that if we extend one of the sides of a triangle, we will get an exterior angle that is equal to the sum of the opposite interior angles.

Q.4. How to implement/prove the angle sum property of a triangle?
Ans:
To implement/prove the angle sum property, we need to construct a line that is parallel to the base of the triangle. Then using the properties of parallel lines and linear pair axiom, we can implement/prove it.

Q.5. What are the applications of the angle sum property of a triangle?
Ans:
If we can divide a polygon into triangular parts then, we can use this concept of the angle sum property of a triangle to find the sum of the interior angles of a polygon. For example, we can prove that the sum of all the interior angles of a quadrilateral is \({360^{\rm{o}}}\).

Angle Sum Property of a Triangle: Definition, Properties, Proofs (2024)

FAQs

Angle Sum Property of a Triangle: Definition, Properties, Proofs? ›

Proof of the Angle Sum Property

What is the angle sum property of a triangle and prove it? ›

Angle Sum Property of a triangle states that the sum of all the interior angles of a triangle is equal to 180°. For example, In a triangle PQR, ∠P + ∠Q + ∠R = 180°.

What are the properties of triangle proofs? ›

Triangle Sum Theorem: The three angles of a triangle sum to 180° Linear Pair Theorem: If two angles form a linear pair then they are adjacent and are supplementary. Third Angle Theorem: If two angles of one triangle are congruent to two angles of another triangle, then the third pair of angles are congruent.

What is the proof of angle properties? ›

Adjacent angles add to 180o, for example a + b = 180o, a + c = 180. Corresponding angles are equal, for example a = e, b = f, c = g, d= h. Interior angles add to 180o, for example c + e = 180o, d + f = 180. Alternate angles are equal, c = f, d = e.

What are the properties and definitions of a triangle? ›

In Geometry, a triangle is a three-sided polygon that consists of three edges and three vertices. The most important property of a triangle is that the sum of the internal angles of a triangle is equal to 180 degrees. This property is called angle sum property of triangle.

What is the proof of triangle sum? ›

We can draw a line parallel to the base of any triangle through its third vertex. Then we use transversals, vertical angles, and corresponding angles to rearrange those angle measures into a straight line, proving that they must add up to 180°.

What is the answer of triangle angle sum theorem? ›

Answer: The sum of the three angles of a triangle is always 180 degrees. To find the measure of the third angle, find the sum of the other two angles and subtract that sum from 180.

What are 5 ways to prove a triangle? ›

There are five theorems that can be used to show that two triangles are congruent: the Side-Side-Side (SSS) theorem, the Side-Angle-Side (SAS) theorem, the Angle-Angle-Side (AAS) theorem, the Angle-Side-Angle (ASA) theorem, and the Hypotenuse-Leg (HL) theorem.

What is the definition of a triangle proof? ›

Triangle proofs are stereotypically two-column tables that can be used to prove two triangles as congruent. Other ways to show a triangle proof is by a flow-chart or a paragraph. The most commonly recognized and used method is a two-column proof which consists of Statements and Reasons.

What is the angle rule for proofs? ›

The same side interior angles theorem describes an angles proof according to the statement: 'If two parallel straight segments A and B are crossed by a transversal segment C, two adjacent interior angles are supplementary (sum 180 degrees). '

What is the angle addition property? ›

The Angle Addition Postulate states that the sum of two adjacent angle measures will equal the angle measure of the larger angle that they form together. The formula for the postulate is that if D is in the interior of ∠ ABC then ∠ ABD + ∠ DBC = ∠ ABC. Adjacent angles are two angles that share a common ray.

What are the triangle theorems? ›

Theorems of Triangles

Theorem 1: The total of the three interior angles in any triangle is 180 degrees. Theorem 2: When a triangle side is constructed, the exterior angle formed is equal to the sum of the interior opposite angles. Theorem 3: The base angles of an isosceles triangle are equivalent.

What is the angle sum property of a triangle? ›

Angle Sum Property of a Triangle

It is also known as the interior angle property of a triangle. This property states that the sum of all the interior angles of a triangle is 180°. If the triangle is ∆ABC, the angle sum property formula is ∠A+∠B+∠C = 180°.

Which is a property of a triangle? ›

The properties of the triangle are: The sum of all the angles of a triangle (of all types) is equal to 180°. The sum of the length of the two sides of a triangle is greater than the length of the third side. In the same way, the difference between the two sides of a triangle is less than the length of the third side.

What are the rules for angles in a triangle? ›

The angles in any triangle add to 180°. In a right-angled triangle, the two smaller angles add to 90°. In a triangle, the largest angle is opposite the longest side, and the smallest angle is opposite the shortest side. In an isosceles triangle (two sides equal), the angles opposite the equal sides are equal.

How do you prove the ASA property of a triangle? ›

ASA (Angle-Side- Angle)

If any two angles and the side included between the angles of one triangle are equivalent to the corresponding two angles and side included between the angles of the second triangle, then the two triangles are said to be congruent by ASA rule.

What is the proof of the angle angle theorem? ›

Two triangles ABC and DEF such that BC is parallel to EF and angle C = angle F and AD = BE. It is given that BC is parallel to EF, angle C is equal in measure to angle F, and |AD| = |BE|. Then, it is true that B = E, because corresponding angles of parallel lines are congruent.

How do you prove angle addition postulates? ›

The Angle Addition Postulate states that the sum of two adjacent angle measures will equal the angle measure of the larger angle that they form together. The formula for the postulate is that if D is in the interior of ∠ ABC then ∠ ABD + ∠ DBC = ∠ ABC. Adjacent angles are two angles that share a common ray.

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Kelle Weber

Last Updated:

Views: 6131

Rating: 4.2 / 5 (53 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Kelle Weber

Birthday: 2000-08-05

Address: 6796 Juan Square, Markfort, MN 58988

Phone: +8215934114615

Job: Hospitality Director

Hobby: tabletop games, Foreign language learning, Leather crafting, Horseback riding, Swimming, Knapping, Handball

Introduction: My name is Kelle Weber, I am a magnificent, enchanting, fair, joyous, light, determined, joyous person who loves writing and wants to share my knowledge and understanding with you.